Higher Order variance and Gauss Jacobi Quadrature

نویسنده

  • René BLACHER
چکیده

In this report, we study in a detailed way higher order variances and quadrature Gauss Jacobi. Recall that the variance of order j measures the concentration of a probability close to j points x j,s with weight λ j,s which are determined by the parameters of the quadrature Gauss Jacobi. We shall study many example in which these measures specify adequately the distribution of probabilities. We shall also study their estimation and their asymptotic distributions under very wide assumptions. In particular we look what happens when the probabilities are a mixture of points with measures nonzero and of continuous densities. We will see that the Gauss Jacobi Quadrature can be used in order to detect these points of nonzero measures. We apply these results to the decomposition of Gaussian mixtures. Moreover, in the case of regression we can apply these results to estimate higher order regression. Summary : Dans ce rapport, on etudie de facon détaillée les variance d'ordre supérieur et la quadrature de Gauss Jacobi. On rappelle que la variance d'ordre j mesure la concentration d'une probabilité autour de j points x j,s avec des poids λ j,s qui sont déterminés par les paramêtres de la quadrature de Gauss Jacobi. Onétudiera de nombreux exemples pour détailler différents cas o` u ces mesures précisent suffisament bien la répartition des probabilités. Onétudiera aussi leur estimation et leurs lois asymptotiques sous des hypothèses très larges. On regarde en particulier ce qui se passe lorsque les probabilités sont un mélange de points de mesures non nulles et de densités continues. On verra que la Quadrature de Gauss Jacobi peut permettre de détecter ces points de mesures non nulles. On appliquera ces résultatsà la décomposition de mélanges gaussiens. De plus dans le cas de régression on peut appliquer ces résultatsà l'estimation de régression d'ordre supérieur.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential evaluation in space-time BIE formulations of 2D wave equation problems

In this paper we examine the computation of the potential generated by space-time BIE representations associated with Dirichlet and Neumann problems for the 2D wave equation. In particular, we consider the efficient evaluation of the (convolution) time integral that appears in the potential representation. For this, we propose two simple quadrature rules which appear more efficient than the cur...

متن کامل

Gauss-chebyshev Quadrature Formulae for Strongly Singular Integrals

This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...

متن کامل

Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights

An efficient algorithm for the accurate computation of Gauss–Legendre and Gauss– Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100.

متن کامل

Calculation of Gauss-Kronrod quadrature rules

The Jacobi matrix of the (2n+1)-point Gauss-Kronrod quadrature rule for a given measure is calculated efficiently by a five-term recurrence relation. The algorithm uses only rational operations and is therefore also useful for obtaining the Jacobi-Kronrod matrix analytically. The nodes and weights can then be computed directly by standard software for Gaussian quadrature formulas.

متن کامل

A note on the Gauss-Jacobi quadrature formulae for singular integral equations of the second kind

A fast and efficient numerical method based on the Gauss-Jacobi quadrature is described that is suitable for solving Fredholm singular integral equations of the second kind that are frequently encountered in fracture and contact mechanics. Here we concentrate on the case when the unknown function is singular at both ends of the interval. Quadrature formulae involve fixed nodal points and provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012